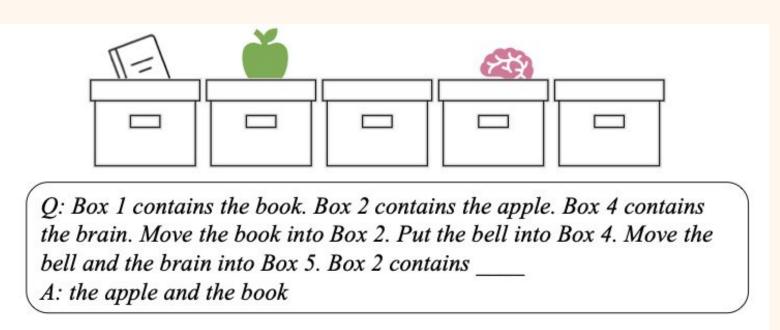
Mechanistic Understanding of Entity Tracking in Natural Language involving Multiple Operations



Zilu (Peter) Tang, Qiao Zhao, Gabriel Franco, Geneva Yang, Angelos Poulis, Derry Wijaya, Aaron Mueller, Sebastian Schuster, Najoung Kim

Contact us with ideas and collab!

zilutang@bu.edu zhaoqiao@bu.edu

Entity Tracking: Prerequisite for Reasoning

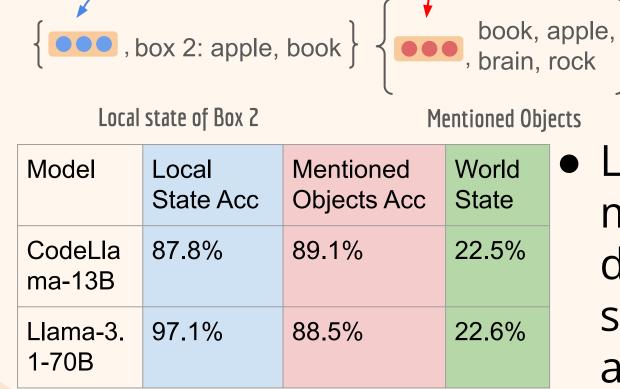
- Prerequisite capability for many tasks like game, reasoning, code variable tracking
- Synthetically generated, verifiable results¹
- no world knowledge needed

Tracking accuracy improves with LM size & with CoT

- GPT2,
- Flan-T5-XL (3B) ~0% accuracy
- (direct)
- ~100%
- (finetune) Small LM cannot perform out-of-the-box, but task is learnable via

finetuning

- Gemma 7B Pretrained, 1-shot
- ~40% (direct)
- ~80% (CoT) Intermediate size LMs can perform task
- Codellama 13B, Llama 3.1 405B • Pretrained, 2-shot
- ~95% (direct)
- Larger LMs can perform task with the help of out-of-the-box
- Tracking Accuracy (%) Direct - CoT


Number of Query Operations CoT predicts states sequentially, improves Gemma-7B over directly predicting the final state

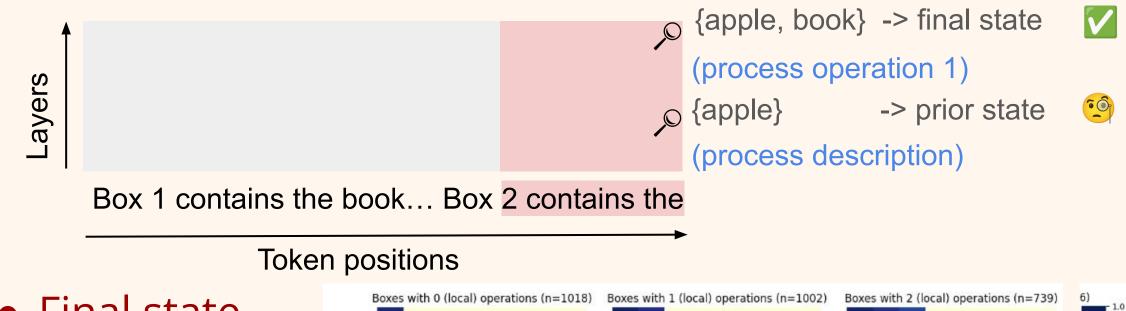
LM sizes

CoT

Probing: LMs Dynamically Retrieve Answer

Box 1 contains the book, Box 2 contains the apple, Box 4 contains the brain. Move the book into Box 2. Put the bell into Box 4. Move the bell and the brain into Box 5. Box 2 contains the apple and the book

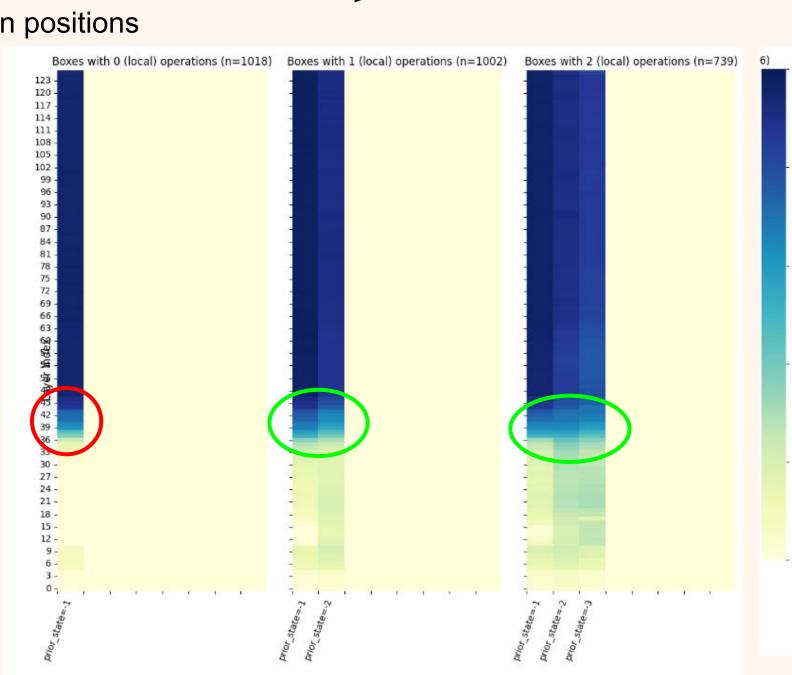
World State (Final) Local state and mentioned objects are decodable, while global state is **not** decodable at the final layer


box 1, box 4: nothing

box 2: apple, book

box 5: bell, brain

LMs Process Multiple Operations In Parallel


- If LMs process multi-operations sequentially across the layers, prior states should be decodable in earlier layers.
- If so, we expect {apple} to be decodable earlier below:

 Final state probing accuracy increases sharply

Prior state probing accuracy emerges around same

layers Processing is

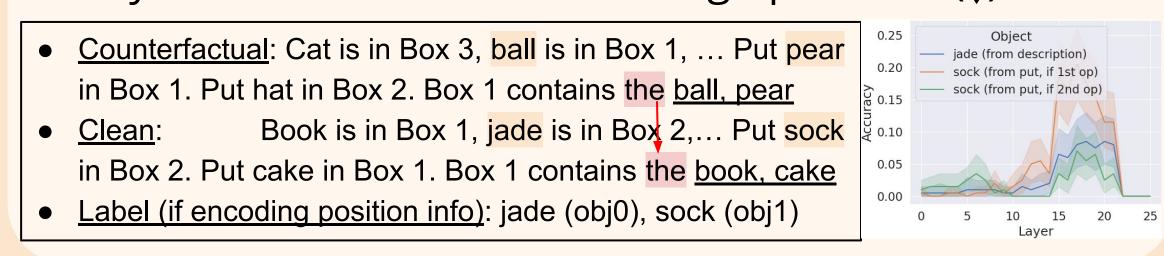
in parallel!

Previously Identified Circuit is not Adequate

 Prior work² found no-op circuit w. iterative path patching w/ metric:

 $(p_{\mathrm{patch}}^{\mathrm{obj(s)}} - p_{\mathrm{clean}}^{\mathrm{obj(s)}})/p_{\mathrm{clean}}^{\mathrm{obj(s)}}$

- We find such a no-op circuit on gemma-2-2b but it tracks only the last mentioned query phrase object (obj1). $(Table \rightarrow)$
- 1-put circuit reveals different components are responsible for obj0 (from description) and obj1 (from put)


- (†) Previous circuit (with four groups of heads) found model retrieve label through the position of the object

Mode/objective	Argmax Acc	topK Acc (obj 0)	topK Acc (obj 1)
Full Model	0.71	0.52	0.65
1put, obj0+1	0.67	0.70	0.18
1put, obj0	0.64	0.83	0.13
1put, obj1	0.46	0.20	0.54
No-op (prior) ²	0.98	0.09	0.98

(↑) we find different circuit for obj0/1 by varying which object(s) we use as our label.

Activation patching reveals similar "put" mechanism

• Desiderata-based patching² (residual stream) indicates similarity in layers between put and description, and they share retrieval circuit through position (1)

Citations & Acknowledgements

- 1. Kim and Schuster. Entity Tracking in Large Language Models. 2023
- 2. Prakash et al. Fine-tuning Enhances Existing Mechanisms: a Case Study on Entity Tracking 2024
- 3. Li et al. Emergent world representations: Exploring a Sequence Model Trained on a Synthetic Task (OthelloGPT) 2023 This project is supported by MassMutual.

Future Plans: Single & Multi-Operation Mechanisms

- Need to patch at multiple prediction positions?
- Positional information stored in the same subspaces?
- Counterfactuals for individual operations? (e.g. put)
- Can we find mechanistic advantages of CoT? How do we analyze CoT circuits?
- Is multi-op circuit compositions of single-op circuits?
- How do LMs encode different operations internally, e.g, local removals v.s. global removals.