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Abstract

Sequential neural networks have shown success on a variety of natural language
tasks, but through what internal mechanisms they achieve systematic composition-
ality crucial to language understanding is still an open question. In particular, gated
networks such as Gated Recurrent Units (GRUs) are known to significantly outper-
form Simple Recurrent Neural Networks (SRNs). We conduct an exploratory study
comparing the abilities of SRNs and GRUs to make compositional generalizations,
using adjective semantics as testing ground. Our results demonstrate that GRUs
generalize more systematically than SRNs. On analyzing the learned represen-
tations, we find that GRUs encode the compositional contribution of adjectives
as directionally consistent linear displacements. This consistency correlates with
generalization accuracy within GRUs, suggesting that it is an effective strategy for
deriving more compositionally generalizable representations.

1 Introduction

The impressive performance of neural networks in natural language processing (NLP), a domain
in which symbolic representations are traditionally viewed as indispensable, raises the question of
how these models accomplish (or approximate) symbolic compositionality. Among sequential neural
networks, gated models such as Long Short-Term Memory (LSTMs) [1] and Gated Recurrent Units
(GRUs) [2] outperform Simple Recurrent Neural Networks (SRNs) in a range of sequence modeling
tasks [3] including language modeling [4], and achieve better compositional generalization [5, 6].
In this paper, we conduct an exploratory study testing whether this difference can be explained by
geometric regularities, using adjective semantics as our testing ground. Specifically, we investigate
whether semantic contribution that remains invariant across multiple contexts can manifest as geo-
metric regularity in the sequence representations encoded by these networks, similarly to [7] where
consistent vector offsets denote the same relation between pairs of words in the embedding space.

1.1 Related work

Our work shares motivation with neural network analysis work aiming to “open the black box”
[8], especially regarding compositionality [5, 9, 10, 11]. We focus on systematic compositionality,
the “algebraic capacity to understand [...] novel utterances by combining familiar primitives” [12].
Prevalent approaches for analyzing neural NLP models include auxiliary classifiers, challenge sets,
and adversarial perturbation targetting specific linguistic properties [13]. Although such methods
serve as useful probes for gauging what the models are capable of, they provide limited insight
about the learned representations. We analyze the properties of model-internal representations, along
the lines of [14, 15]. We train models to perform Natural Language Inference (NLI) [16], as in
[17, 18, 19], and also draw from works that use synthetic datasets for conducting focused evaluations
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of linguistic phenomena [15, 20, 21, 22]. Finally, our work shares topical interests with NLP literature
on semantic compositionality [23, 24], logical reasoning [25, 26], and adjective semantics [27].

2 Methodology

2.1 Dataset for testing compositional semantic generalization

We design a task that tests a model’s capacity to make compositional semantic generalizations. For
this task, we adopt the NLI [16] setup. The input consists of a premise-hypothesis (p/h) pair, and
the task is to predict whether p entails h. We use a binary version of NLI, where the labels are
{entailed, not entailed}. Solving our task is contingent upon correctly understanding the effect of
adjectives on the entailment pattern between p and h. The dataset consists of training, development
and generalization sets, where the generalization set contains classes of examples not shown during
training (zero-shot), but are such that we expect a model that makes human-like compositional
generalizations to be able to solve. In particular, we target two patterns: (1) generalization to unseen
sequences, and (2) generalization from complex to simpler compositional forms (see Table 1).

Table 1: Example p/h pairs from the dataset. → denotes ‘entails’ and 9 denotes ‘does not entail’
(not all template types are listed, due to space constraints).

Training/Development sets

Adj1 Adj2 N→ Adj2 N Mary is a tall American lawyer. →Mary is an American lawyer.
Adj1 Adj2 N 9 Adj2 N Mary is a former American lawyer. 9 Mary is an American lawyer.
Adj1 Adj2 N→ N Mary is a tall American lawyer. →Mary is a lawyer.
Adj1 Adj2 N 9 N Mary is a former American lawyer. 9 Mary is a lawyer.

Generalization set

Adj1 Adj2 N→ Adj2 N Mary is a tall former lawyer. →Mary is a former lawyer. (unseen)
Adj1 Adj2 N 9 Adj1 N Mary is a tall former lawyer 9 Mary is a tall lawyer. (unseen)
Adj N→ N Mary is a tall lawyer. →Mary is a lawyer. (complex to simple)
Adj N 9 N Mary is a former lawyer. 9 Mary is a lawyer. (complex to simple)

Training set. We use two adjective classes that give rise to different entailment patterns [28, 29].
When Adj is a subsective adjective, Adj N entails N (e.g., tall president→ president); when it is a
nonsubsective adjective, Adj N does not entail N (e.g., fake president 9 president). There are no
input pairs such as John is a former teacher 9 John is a teacher or John is a tall teacher→ John is
a teacher, that clearly indicate to the model whether or not a particular adjective is subsective.

Generalization set. The generalization set tests for the following two types of generalizations,
which we would expect from a model that has successfully learned the semantic contribution of
adjectives included in the training set:

• Generalization to unseen sequences. The generalization set contains unseen sequences of
adjectives, each of which is included in the training set. For instance, tall American and former
American both appear in the training set, but tall former American is unseen.

• Generalization from complex to simple form. The set also contains examples that require
teasing apart the individual contributions of each adjective. The individual contributions are not
explicitly shown in the training/development sets. For instance, tall x→ x, but former x 9 x.

Generation. We use templates Subj is a Adj1 Adj2 N → Subj is a Adj1/2 N and Subj is a Adj1
Adj2 N 9 Subj is a Adj1/2 N to generate training data (see Table 1), using 12 different subsective
adjectives (half in Adj1 position and half in Adj2 position) and 4 nonsubsective adjectives (only seen
in Adj1 position in training). We use 9 different noun phrases that can appear in Subj position, which
can be either one or two words long to keep the length of the whole sequence variable (e.g., Mary,
my dad). We use 10 nouns that appear in the N position. These nouns are single words that are
potentially modified by the adjectives (e.g., president, student). We also add two trivial cases: (1)
self-entailment (X → X), and (2) non-entailment of subject-mismatched p/h (e.g., x is a z 9 y is a
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z). 23,400 unique pairs are generated through this process, 15% of which are used as a development
set (|train| = 19, 890, |dev| = 3, 510). For the generalization set, we use the same templates but with
nonsubsective Adj2 in the premise, for generating the unseen sequences. New templates Subj is a
Adj N → Subj is a N and Subj is a Adj N 9 Subj is a N are used for the complex to simple form
generalization cases. This process yields |test| = 15, 120.

2.2 Geometric measures

We test the hypothesis that geometric consistency is used to represent the compositional contribution
of adjectives that is constant across different contexts (e.g., different nouns that the adjective modifies).
For instance, we expect an adjective such as former to have some common meaning shared across
different linguistic contexts it appears in, rather than carrying an idiosyncratic meaning in every use.
In our task specifically, adjective subsectivity should be contextually invariant. One simple way this
context-invariant semantics could be captured is through a constant linear displacement. We compute
the direction and magnitude consistency of vector offsets to test the hypothesis that the contribution of
adjectives to the meaning of a sentence is represented by a constant displacement. The consistency of
the semantic contribution of a given word w is defined as follows. For all sentences in the test set that
contain w, take the last hidden state hn of their encoding. Then take a version of each sentence with
w removed, and take its last hidden state h′n−1. The vector offset of the ith sentence that contains w
is defined as oi = hn − h′n−1, where n is the length of sentence i. Then the directional consistency
θw of a word w is defined as the average pairwise cosine similarity for all o (Eq. 1), and magnitude
consistency ιw is defined as the negative of the average pairwise absolute difference in Euclidean
norms for all o (Eq. 2), where N is the total number of sentences containing w.

θw =

N−1∑
i=1

N∑
j=i+1

oi·oj
‖oi‖‖oj‖

N(N − 1)
(1) ιw = −

N−1∑
i=1

N∑
j=i+1

|‖oi‖ − ‖oj‖|

N(N − 1)
(2)

This constant linear displacement hypothesis is motivated by empirical observations such as [7], where
systematic compositional contributions were found to be encoded as consistent vector offsets. Tensor
Product Representations [30] formally generalizes this intuition, representing symbolic structures as
linear sums of filler and role bindings. For a more detailed discussion, see Appendix B.

3 Experiments

Models. We used a Siamese recurrent classifier architecture similar to [6], in which the same
recurrent network is used to encode p and h, and the concatenated encodings (we took the last hidden
state) of the two sentences are passed to the classification layer as in [16]. We used AllenNLP [31]
to implement our models.1 For the recurrent units, we tested SRNs and GRUs with a single hidden
layer. The input dimension was fixed to 300, and the hidden dimension of the recurrent units was
varied between h = {8, 16, 32, 64, 128, 256, 512}. Word embeddings were initialized using Xavier
initalization, the default setting in AllenNLP. The classifier was a single feedforward layer with linear
activation followed by a softmax, which takes 2h dimensional inputs.

Training. We trained models on the entailment dataset for a maximum of 50 epochs using stochastic
gradient descent (learning rate=0.1, batch size=16), early stopping when the development set accuracy
did not improve for 5 epochs. In practice, most models reached peak development accuracy within 10
epochs. We ran each model with the same hyperparameters with 10 different random initializations.

Behavioral results. Both SRN and GRU models were able to learn the train/development sets
perfectly, with small variations across random initializations (SRN: 0.96 (±0.05) (train), 0.98
(±0.03) (dev), GRU: 0.99 (±0.01) (train), 0.9999 (±0.0001) (dev)). However, SRN and GRU
models significantly differed in their generalization accuracy (Mann-Whitney U = 3231, p < .001)—
GRU models on average achieved near-perfect accuracy (0.97), whereas SRNs did not (0.69). No
single SRN model generalized perfectly (highest accuracy = 0.87).

1Our code is available at https://github.com/najoungkim/compnet.
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x=farmer

x=former farmer

y=skater

y=former skater

z=lawyer

z=former lawyer

SRN

x=teacher

x=former teacher

y=skater

y=former skater

z=lawyer

z=former lawyerGRU teacher

former teacher

tall teacher

tall former teacher

SRN
teacherformer teacher

tall teacher

tall former teacher

GRU

Figure 1: Directional consistency of adjectives in SRN and GRU models.

Representational analysis results. GRU models encoded adjectives’ compositional contributions
with higher directional consistency (U = 3025, p < .001, |∆| = 0.29) (see Figure 1 for an illustra-
tion). The difference in magnitudes of the adjectives’ compositional contributions were more similar
to each other in GRUs than SRNs (U = 119, p < .001, |∆| = 1.47) . Within GRU models, we found
a significant correlation between generalization set accuracy and directional consistency of adjective
encodings (Pearson’s r = 0.54, p < .001), but not between accuracy and magnitude consistency
(r = 0.00, p = .99). Within SRNs, we observed an inverse correlation between directional consis-
tency and accuracy (r = −0.69, p < .001). This effect was largely driven by a cluster of models that
had below majority-class accuracy (< 0.69) (see Figure 2, far left). The inverse correlation no longer
holds if we exclude models in this cluster (r = 0.32, p > .05 after multiple-comparisons correction).
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Figure 2: Accuracy plotted against consistency measures with the line of best fit by model group.
Additional plots are shown for data excluding models with accuracy below majority-class.

Table 2: Pearson’s correlation between consistency measures and generalization set accuracy. The
p-values are adjusted using Holm-Sidak correction. (∗= p < .05,∗∗= p < .01,∗∗∗= p < .001)

Model # Accuracy Corr(acc, dir.) Corr(acc, magn.)

All Adj. N All Adj. N

SRN 70 0.69 (±0.11) 0.21 −0.69∗∗∗ 0.44∗∗ −0.59∗∗∗ −0.59∗∗∗ −0.53∗∗∗

GRU 70 0.97 (±0.04) 0.52∗∗∗ 0.54∗∗∗ −0.12 0.10 0.00 0.41∗

Our findings can be summarized as follows. SRNs and GRUs both could learn the training data
perfectly, but their capacity to make systematic generalizations differed greatly. GRUs encoded the
contribution of adjectives to the sentence in a more geometrically consistent manner, with respect
to both direction and magnitude of the linear offsets. Within GRU models (but not within SRNs),
models in which the contribution of adjective was encoded as directionally consistent offsets had
higher generalization accuracy. This finding does not seem to be an artifact of the dataset that we
used; a follow-up experiment using SCAN [5] showed similar trends (see Appendix A).

4 Conclusion

We investigated the difference between SRNs and GRUs in their capacity to make compositional
semantic generalizations. Our results suggest that SRNs and GRUs employ qualitatively different
approaches for solving the same task, and the strategy GRUs adopt proves more effective for making
systematic generalizations. Furthermore, we observe that the representations GRUs develop display
more geometric regularity across different linguistic contexts, measured by the average direction and
magnitude consistency of the compositional contributions of the adjective. Directional regularity
in particular seems to facilitate systematic generalization for GRUs, suggested by the significant
within-GRU correlation between directional consistency and generalization accuracy.

What is the nature of the architectural bias that gives rise to this discrepancy? One insight can be
drawn from [32], which makes an empirical remark about the importance of a forget gate. We could
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speculate that the forgetting mechanism encourages models to discard contextual information (if
it is useful to do so), biasing models towards developing more globally invariant representations
of lexical items. Exploring this hypothesis further would be an interesting follow-up, elucidating
the roles of different architectural components in representing compositionality. More broadly, we
plan to investigate whether we could inject bias into the models for learning more compositionally
generalizable respresentations, and extend the scope of our work to more naturalistic datasets.
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A SCAN Experiment

We extend our offset consistency analysis to models trained on SCAN, a dataset designed to test for
compositional generalizations. The goal of the task is to map a (simplified) natural language command
sequence to a corresponding action sequence. The commands are generated by a phrase-structure
grammar, and the command-to-action mapping is determined by a set of compositional rules [5].

Dataset. We used the split of the SCAN dataset that tests for compositional generalization across
primitive commands. In this split, the command jump is only shown in its primitive form or in a
limited number of compositional contexts (Experiment 3 in [5]). We chose this split for two reasons:
(1) the clear difference in train-test distribution (the test set is a generalization set), and (2) the
availability of different replication splits.2 We used splits with a varying number of compositional
examples shown in training (n ∈ {4, 8, 16, 32}, where n denotes the number of compositional
commands given in the training set). We did not use n ∈ {0, 1, 2} because models almost completely
failed to generalize on these splits, as was reported in [5]; as such, there was no interesting variance
across models in terms of generalization set accuracy.

Models and training. We used a GRU encoder-decoder architecture, treating the command-to-
action translation as a sequence-to-sequence mapping task. We used AllenNLP [31] to implement
our models. We used an input of dimension 100 and a single hidden layer of dimension 100, with
a dropout rate of 0.1 following [33]. The bottleneck embedding was the last hidden state of the
encoder. Following [5], we used the Adam optimizer with a learning rate of 0.001, clipping gradients
with a norm larger than 5.0. For training the decoder, teacher-forcing was applied 50% of the
time, again following [5]. Each model was trained for 30 epochs with a batch size of 128. 15
models with different random initializations were trained for each of the 5 replication splits for each
n ∈ {4, 8, 16, 32}, giving us 75 models for each n and 300 models in total.

Table 3: Pearson’s correlation between consistency measures and generalization set accuracy for
GRU models trained on SCAN. The p-values are adjusted using Holm-Sidak correction. (∗= p <
.05,∗∗= p < .01,∗∗∗= p < .001) Columns labeled Dir. and Magn. list the mean direction and and
magnitude consistency, respectively.

Model # Accuracy Dir. Corr(acc, dir.) Magn. Corr(acc, magn.)

Mean (±σ) Min. Max. Modifiers Modifiers

n = 4 75 0.01 (±0.01) 0.00 0.03 0.37 0.33∗∗ −1.28 0.29∗

n = 8 75 0.03 (±0.02) 0.01 0.12 0.39 0.41∗∗∗ −1.23 0.17
n = 16 75 0.15 (±0.09) 0.02 0.43 0.41 0.27∗ −1.16 0.31∗

n = 32 75 0.48 (±0.10) 0.27 0.70 0.42 −0.26∗ −1.10 −0.26∗

All 300 0.17 (±0.20) 0.00 0.70 0.40 0.50∗∗∗ −1.19 0.44∗∗∗

Representational analysis results. Table 3 shows the models’ generalization accuracy, and the
correlation between generalization accuracy and the average offset consistency over the modifiers in
the encoder-side vocabulary (the most analogous setup to our main adjective experiments). Accuracy
is measured by the percentage of full-string matches in the generalization set. Aggregating over all
models, there was a significant positive correlation between generalization accuracy and directional
consistency (ρ = 0.50, p < .001), and between generalization accuracy and magnitude consistency
(ρ = 0.44, p < .001). However, n itself was correlated with both measures; as n increases, the
directional consistency of the modifiers increases (ρ = 0.55, p < .001) and the magnitude consistency
also increases (ρ = 0.49, p < .001). A within-n correlation analysis reveals that the trend of more
consistent offsets leading to better generalization accuracy depended on n. As can be seen from
Figures 3 and 4, for n ∈ {4, 8, 16} the consistency-accuracy correlation holds (except for n = 8
for which the magnitude correlation is not significant), but we found an opposite trend for n = 32.
One possible explanation is that, as n increases, the train-generalization set distributions become
increasingly similar to each other. If the train and test distributions are similar, representations that

2https://github.com/brendenlake/SCAN/blob/master/add_prim_split/with_additional_
examples
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are more specifically tuned to particular contexts in the training set (e.g., the same word showing
more idiosyncrasy across different contexts) could be beneficial at test time, even if they are less
compositionally generalizable. Note that the mean directional and magnitude consistency did increase
with larger n.
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Figure 3: Directional consistency of modifiers in GRU models trained on SCAN. Note the variability
in y axis scales across different n.
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Figure 4: Magnitude consistency of modifiers in GRU models trained on SCAN. Note the variability
in y axis scales across different n.
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B Connection between geometric consistency measures and Tensor Product
Representations

It has been empirically argued that representations learned by neural networks can encode systematic
compositional contributions via consistent vector offsets, as illustrated by the well-known example
king− man + woman≈ queen from [7]. Tensor Product Representations (TPRs) [30] provide a more
explicit formal generalization for this observation; that is, the representation of a symbolic structure
is a linear sum of filler and role bindings. Filler and role representations are both vectors, and their
binding is the outer (tensor) product of these two vectors. For the king/queen analogy example, the
meaning of king and queen may be encoded as a linear sum of filler-role bindings, where the roles
(which correspond to lexical features in this example) involved are gender and status. The meaning
of the two words only differ by the fillers that are bound to gender. Under this analysis, the observed
vector offset consistency is transparently predicted: (male ⊗ gender + royal ⊗ status) -
(male ⊗ gender) = (female ⊗ gender + royal ⊗ status) - (female ⊗ gender).

Recent works have shown that sequential neural networks such as GRUs do develop representations
that approximate TPRs [34, 33]. Under a TPR formulation, our compositional generalization task
for adjectives semantics would be equivalent to learning the correct subsectivity (role) for each
adjective (filler). If a network learns to assign correct filler-role bindings for all adjective uses (e.g.,
tall’ = tall ⊗ subsective, former’ = former ⊗ nonsubsective, it should be able to solve the
generalization set, since the required inference relies on the subsectivity of the adjectives (and the
meanings do not need to contextually vary for this particular task). In such a network, the vector
offset between a sentence that contains Adj and a sentence with Adj removed is expected to be Adj
⊗ subsectivity (or a vectorized version of this matrix) across all sentences that contain Adj. Since
vectors are defined by their direction and magnitude, a consistent offset in terms of direction and
magnitude signals a more compositionally useful representation for this task.

The SCAN experiment in Appendix A suggests that consistency of vector offsets continues to be
useful in a setting that requires a more complex compositional reasoning. We suggest a possibility
that the offset consistency functions as proxies for role stability across different constructions, which
facilitate compositional generalization. [33] provides a comprehensive case-by-case analysis of the
role scheme that achieves near-perfect accuracy on the vanilla split of SCAN (where the train/test
sets are mutually exclusive subsets of the same distribution). Often these roles are very specific (i.e.
highly context-dependent), which is likely a byproduct of a specific subset of examples in the training
set rather than a reflection of their usefulness in out-of-domain generalization. For instance, after gets
assigned role 17 if no other word has role 17 or if the command after after ends with around left, and
gets assigned role 43 otherwise. Such idiosyncratic roles, which are likely artifacts of the training
data, could explain the degradation in surgery accuracy over multiple substitutions that [33] reports.
That is, changing the filler (e.g., substituting left:36 with right:36) may trigger role changes even
for other unmodified elements, which would result in a failed surgery step. In an ideal compositional
model this would not happen—the roles of the unmodified elements would be stable. Not only in
the surgery context but also more generally, stable roles for the same lexical item (or primitives)
over multiple constructions would be more compositionally generalizable, especially when we are
using out-of-domain test sets as in the split used in Appendix A. The offset consistency as shown in
Appendix A could be a signal of role stability (since the offsets would be the more consistent when
the roles are invariant to word removal), which could help generalization. We hope to investigate the
relation between role stability and compositional generalizability more explicitly in future work.
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